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Abstrm~--.One-dimensional two-fluid equations are used to calculate the mass flux of initially saturated or 
subcooled water discharging from a pipe in critical flow. The model allows in a general way for thermal 
non-equilibrium between the liquid and vapour bubbles, and for interphase relative motion. 

The theory is shown to he in good agreement with the measured critical flow-rates of pressurised water 
over a wide pressure range for a single choice of parameters characterising (i) the density of nucleation 
sites in the liquid, (ii) the liquid superheat required to cause bubble nucleation. 

Predictions are made of the critical mass flux of initially saturated water in pipes of the range of sizes of 
interest in water-reactor blowdown safety analysis. Results indicate that for pipes up to ten diameters in 
length flows will be significantly higher than values obtained from conven:ional homogeneous thermal 
equilibrium flow theory. 

1. INTRODUCTION 

Accurate prediction of the critical flow-rate of a steam-water mixture in a pipe is a problem of 
fundamental importance in the blowdown safety analysis of water cooled nuclear reactors. 

Over the past 20 years there have been many experimental studies of critical vapour-liquid 
flow in pipes and nozzles, and several models have been proposed to account for observations. 
Reviews of this work by Simon (1973) and Ardron & Furness (1976) show that none of the 
available models provides a satisfactory description of the effects on the critical flow rate of 
variations in the length and diameter of the flow passage. Discrepancies, which often become 
large when the discharge pipe is short, are usually due to a failure to correctly represent 
interphase thermal non-equilibrium and interphase relative motion. Critical flow measurements 
have not so far been possible for reactor-size pipes. Deficiencies in the models can therefore 
lead to substantial uncertainties in the discharge flow-rate assumed in a reactor blowdown 
safety calculation. 

The objective of this paper is to develop a physical model for the critical flow of initially 
saturated or subcooled liquid which can describe accurately the observed effects of pipe length 
and diameter on flow-rate. 

Calculations are based on the use of one-dimensional two-fluid equations (Ishii 1975) to 
describe the acceleration of the boiling two-phase mixture in the pipe. In contrast to previous 
work, which has usually been based on the homogeneous flow model, (e.g. Simpson & Silver 
1962; Edwards 1968, Malnes 1975) this representation allows interphase relative motion to be 
included naturally in the analysis. The model includes a treatment of the delayed nucleation and 
growth of vapour bubbles, and of the effects of friction and area change. 

Predictions of the new model are compared with available data for a range of pressures, and 
the theory is used to calculate the critical mass flux of saturated water in wide-bore pipes of 
interest in reactor blowdown calculations. 

2. OUTLINE OF METHOD OF CALCULATION 

Critical vapour-liquid flow in a pipe is characterised by a steepening pressure gradient which 
becomes extremely large at the choking plane (Isbin et al. 1962; Zaloudek 1964). Simpson & 
Silver (1962) showed that for real boiling liquids this behaviour would be expected even in the 
absence of friction, as a consequence of the acceleration of the flow caused by delayed vapour 
generation, in the steady state the flow-rate adjusts itself so that the choking plane coincides 

323 



324 K a. ARDRON 

with the pipe exit, in order to satisfy the conservation laws. This suggests that a possible way of 
calculating the critical mass flux in a pipe of given size is to vary the assumed flow-rate until the 
choking plane is predicted to coincide with the end of the pipe. This method, which was first 
used for calculating critical flow-rates by Edwards (1%8), has been used in the calculations 

described below. 
The position of the choking plane for an assumed mass flow-rate in a duct of arbitrary size is 

determined by solving one-dimensional equations of the two-fluid model (Ishii 1975). The rate 
of mass transfer is determined by considering the nucleation and growth of vapour bubbles in 
the superheated liquid. Momentum transfer between phases is calculated from standard 
relations for the viscous and inertial drag on small spherical gas bubbles. It is assumed that 
bubbles do not coalesce, and that the thermal boundary layers surrounding individual bubbles 

do not interact. 
The major simplifying assumption is the representation of the axisymmetric flow in the pipe. 

and inlet region, using a one-dimensional approximation. Thus the flow in a tapering or 
constant-area pipe is calculated using area-averaged forms of the conservation equations: in a 
similar way flow in the reservoir upstream of a pipe inlet is calculated assuming a uniformly 

converging radial flow. 

3, CONSERVATION EQUATIONS 

The conservation equations used are based on the general two-fluid equations derived by 
Ishii (1975). Si~nplifications are introduced by considering an adiabatic, one-dimensional flow, 
and averaging the equations across the duct area. For steady conditions the equations for 
conservation of mass and momentum of phase k are, neglecting body forces, 

~k ~ dug_ 1 dA n 
Ukpk + Olkllk q- tltkPk - ~  -- F k -- OtkPkltk An  d r  I 

dag , ^ .  dug+_ dpk 
(pc - P g ' ) ~ - n  * ~u,g.g -d-fn ~g T~n = (ug, - uk)rk + ~u + ~gw 

[11 

where uk, pk, Pk, and ct k denote respectively the velocity, pressure, density and volumetric 
concentration of phase k at axial position r/ in the duct. Fk is the rate of increase of mass of 
phase k per unit mixture volume due to phase change, and rkd, zg,~ represent the drag force on 
phase k per unit mixture volume due respectively to interracial and wall shear. A,~ is the duct 
area at position r/. The variables subscripted ki are properties of phase k in the neighbourhood 
of the interface. Throughout the paper k will refer either to the gas phase k ~ G, or the liquid 

phase k -- L. 
Equations [1] incorporate the conventional simplifying assumption that averages of products 

of dependent variables across the duct are identical to products of averages. 
Anticipating that we will wish to calculate the rate of formation and growth of individual 

bubbles we introduce a time coordinate t(r/) as an additional dependent variable, t(r/), is 
defined as the time taken for a typical bubble to reach position 7/ from some initial location 

where the flow is nearly stationary. It must satisfy the kinematic equation: 

d t  = uc_~. [21 
dn 

4. CONSTITUTIVE AND STATE EQUATIONS 

Before [1] and [2] can be integrated, constitutive relations are required to define the 

interfacial conditions, and the rates of interphase mass- and momentum-transfer. 
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4.1 In terracial  cond i t ions  

It is assumed (i) that liquid inertia and surface tension have a negligible influence on the 
growth of vapour bubbles and (ii) that the liquid adjacent to the interface remains saturated. 

Thus 

pci = PLi = Pc  = PL, [3] 
and 

TiL = TSAr(p). [4] 

For steam and water [3] is a reasonable assumption for bubble growth over the timescales of 
tens of milliseconds of interest here (e.g. Board & Duffey 1971). Equation [4] can likewise be 
shown to be valid for pressure changes occurring over times greater than a few microseconds 
(Ardron & Duffey 1977). 

For simplicity the mean flow velocity at the interface is taken as the bulk average velocity of 
the liquid. Hence 

uci = uLi = uL. [5] 

4.2 S t a t e  equa t ions  

It is assumed that the vapour is a perfect gas and obeys the saturated vapour pressure law 
obtained by integrating the Clausius-Clapeyron equation. Neglecting the vapour density 
compared with the liquid density this becomes: 

In p + haL" Pc = const. [6] 
P 

where Ra is the gas constant for unit mass of the vapour and hal is the latent heat. The liquid is 
taken as incompressible so that: 

PL = const., independent of temperature. [7) 

4.2.1 E v a p o r a t i o n  rates. Prediction of the evaporation rate Fa in boiling requires a deter- 
mination of both the rate of appearance of bubbles, and of their subsequent growth. Simplified 
models for these processes are described below. 

(a) Nucleation rates. In practical boiling systems bubble nuclei formation is assisted by the 
action of impurities, undissolved gases etc. in the liquid, and by nucleation sites in the container 
walls. Such heterogeneous constituents allow boiling to take place for liquid superheats which 
are orders of magnitude smaller than those required to boil pure liquids (e,g. Cole 1974). Kinetic 
theory arguments suggest that in the presence of solid impurities the rate of formation of 
bubble nuclei per unit liquid mass is given by a relation of the form (Hirth& Pound 1963): 

dnb 
d-'t-" = ~n~ exp (- ¢JwnI~TL). [8] 

Here ns is the effective density of heterogeneous nucleation sites in the liquid and P "  
(2orLRa/~rfl) I/2 is a frequency factor connected with the impingement flux of liquid molecules./3 
is the Boltzmann constant and ~L the liquid surface tension. The factor 0(~ < 1) depends on the 
surface geometry, and on the angle of contact with which the liquid wets the solid, wn is the 
Gibbs energy of formation of the nucleus in a pure liquid, which if the vapour inside the 
nucleus is assumed to be at the saturation pressure PSAT(TL) is given by: 

w.  = 1 6 ~ L 3 / 3 [ p  -- ps^~TD] 2. [9] 
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Equations [8] and [9] imply that the liquid superheat must exceed some critical value before 
appreciable nucleation can take place. By using the linearised Clausius-Clapeyron equation it is 
straightforward to show that this so-called "incipient boiling superheat" is given by (e.g. Cole 
1974) 

O , = T _ T s A r = f _ ~ y _ [  16znrL30 ],,2 
pGnGL 

[io] 

where TsAr is the saturation temperature at the ambient pressure. Equation [10] is obtained by 
setting dnddt = I in [8]. Eliminating ~b between [8] and [10], noting that 0c '~ TL = TS^T, and that 
ns "~ ~ in most examples of heterogeneous nucleation, the nucleation rate can be expressed in terms 
of 8c by the relation 

dnb ~ pa2h~L(ln ~)Oc 2 "~ 
dt = n s # e x p [ - T 2  T 2 .  [11] 

L [P--PsAT( L)] J 

As noted above a practical boiling system contains a range of agents to assist nucleation, 
each of which presumably has an associated activation energy ~w,, and site density ns. 
However, direct measurements of heterogeneous nucleation rates in boiling are not available at 
present. In their absence the assumption is made that [11] can describe the average nucleation 
rate due"to all.processes combined, provided a suitable choice is made for adjustable 
parameters ns and 6c. An essentially similar procedure was used with reasonable success by 
Simpson & Silver (1962) and Rohatgi & Reshotko (1975) for calculating transient boiling rates in 
accelerating vapour-liquid mixtures. 

(b) Rate of bubble growth. The rate at which vapour forms inside a bubble depends on the 
heat flux in the liquid at the bubble wall, qiL. Applying an energy balance to a control volume 
surrounding a single spherical vapour bubble of radius Rb(t) we get the usual growth relation 
(Plesset & Zwick 1954): 

d [ 4  3 ]  q~L 
d-t ~IrR~ Oa = "41rRb 2, 

hGLi 
[12] 

where haLi is the latent heat of the saturated liquid at the interface. 
For the expansion of initially saturated or subcooled water in a duct the calculations of 

section 6.3 suggest that the velocity of bubbles relative to the surrounding liquid is usually 
small. It is therefore assumed that heat transfer from the liquid to the bubble takes place mainly 
by diffusion. A detailed calculation of the diffusive heat flux, allowing for the sphericity and 
motion of the bubble wall, is not justified in view of the simple formulation used to predict 
bubble number density. As a first approximation, effects of sphericity are neglected, the 
interface being treated as a plane. Following Carslaw & Jaeger (1959) we then have, assuming 
the liquid temperature TL outside the bubble thermal boundary layers is constant, 

qiLo(t, t') = -- Limit ~ f  x~L f '  TiL(r')-- TL --X 2 [13] 

where qiLo(t, t') refers to the diffusive heat flux at t in the wall of a bubble created at t'. x is the 
distance from the interface on the liquid side, and ~L and DL denote respectively the thermal 
conductivity and thermal diffusivity of the liquid. 

In the problem of present interest the interface temperature Tht = TSAT (c.f.  [4]) decreases 
monotonically as the elapsed time t increases. Numerical calculations (section 6) show that the 
variation of pressure and temperature experienced by a bubble travelling along the pipe have 
the form shown schematically in figure 1. For a bubble appearing at t' the simplest ap- 
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Figure I. Variation of pressure and liquid superheat as two-phase mixture accelerates along a pipe. (Based 
on results of numerical calculations for 70 bar steam-water flow). 

proximation to the time variation in TSAr-- TL is a linear function of the form 

O(t) = O(t') + const. (t - t') [14] 

where Off)=- T L -  TSAT" O(t') is the liquid superheat at bubble inception. Inspection of figure 1 
suggests that the linear approximation [14] describes the variation in liquid superheat 
adequately for the growth of the majority of bubbles. The approximation is weakest in the 
region of rapidly changing pressure gradient near the choking plane. However, since the object 
of the present calculation is to determine the location of the choking region rather than its 
detailed structure, this deficiency is considered acceptable. 

With this linear approximation the integration in [13] can be performed analytically giving: 

q~(t, t ' )  = eL 
V'~rDL(t - t ') [20(t) - O(t')]. [15] 

Inserting this expression for the heat flux into [12], and integrating, again adopting the linear 
approximation [14] for the superheat, we get the following approximate relation for the radius 
at time t of a bubble created at t': 

2E ' t  t '~112 
Rb( t , t ' )  Rb(t ' ,  ' l.~ - J = t.) + 3houpt~(~rDL), n [20(t) + 0(t')]. [i6] 

The evaporation rate Fo(t) is found by summing over all bubbles formed in unit volume of 
the two-phase mixture up to an elapsed time t: 

,o(t, -, = P t h o u  [1 - a~(t')]qitz~(t, t ' )41rR:( t ,  t') dt'. [17] 

Substituting for (dnddt), q~u~ Rb from [11], [15] and [16], and neglecting the radius of a newly 
created nucleus compared with its radius at later times, we get the equation: 

Fn(t) = n,C e-S(")(l "a6)(t - t')~12{20(t) + O(t')}2{20(t)- 0(t,)} dt' [18] 



328 K.H. ARDRON 

where: 

C = 16PEL3pL/(97r l/2h 3LiPG2DL3/2) 

g( t ) = pa2 h 2G10c2 In ~[{ TL2[PSA T( To) - p(t)]2}. 

Equation [18] can be used for initially subcooled flows, provided the integrand is understood to 
be zero for the subcooled portion of the expansion, for which p > PSAT(TD. 

4.2.2 M o m e n t u m  transfer  rates. (a) Wall shear effects. For high velocity bubbly flow in a 
circular duct it is usual to relate the mean pipe wall shear stress Sw to the mass flow-rate W 
using an empirical equation of the form (Wallis 1969): 

fF W2 
Sw = (2rr2pmR~) , [19] 

where p,. = a~pc + aLpL, is the mean density of the two-phase mixture. RD is the pipe radius, 
and fv is an appropriate single phase flow friction factor. For turbulent flow in the fully rough 
flow regime, which is the condition most usually of interest here, a suitable empirical relation 

for Iv is (Streeter 1961): 

f F  'n : 3.48 + 4.0 log10 (gale) .  [20] 

We take the roughness as e = 45 x 10 -6 m, a value typically quoted for steel pipes. 

In bubbly flow there is no direct contact between the vapour and the walls of the pipe. It is 

therefore reasonable to assume that: 

~-~ =0 ~)} 
rLw = -- 2 Swl Ro = - [vW2/(  lr 2o,.R 

[211 

where Sw has been eliminated using [19]. 
(b) Inter-phase momentum transfer. Following Ardron & Duffey (1977) the drag force on a 

cluster of small spherical bubbles in unit volume of an accelerating bubbly mixture is written: 

- 9 a a t ~ L ( u a - u D  pLa~(l +2aa)  . fdu~ dull 
. . . . .  ,,a - -  drt J [22] red = - rLe 2t~b 2 2(1 -- aa) [ drl 

where m- is the liquid viscosity. This equation is applicable to a steady flow. The first term on 
the right hand side corresponds to the Stokes viscous drag; the second term arises from the 

inertial drag on the bubble due to its virtual mass. 
At any position in the duct bubbles of a range of sizes are present. An average radius for use 

in [22] is calculated using the formula: 

Rb( t ) ~- [3ad(4wnv( t ))] '13, [23] 

nv(t), the volume concentration of bubbles in the two-phase mixture, is given by integrating 

[ll]: 

~ t n~(t) : ns~pL [1 -- a6(t')] e -gt''~ dt', [24] 

where g(t )  is defined after [18]. 
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5. NUMERICAL CALCULATIONS OF CRITICAL FLOW-RATES 

5.1 Matrix form of equations 
It follows from the saturated vapour pressure law [6] that: 

dp~=[p~ 1 ]dp  
[251 

Eliminating ~'ka, rkw using [21] and [22], and using [3], [5], [7] and [25] the mass and momentum 
conservation relations [1], and the kinematic equation [2], can be combined in a matrix form 

where: 

A dy/d~ = b, [26] 

yr = (ao, t, p, u~, uD. 

The elements of the square matrix A, and the column vector b, are given in the appendix. A 
one-dimensional approximation to the flow-field in a duct of arbitrary geometry can be 
calculated by integrating [26] with a suitable choice for the duct area terms in b. 

5.2 Pipe geometry 
For the illustrative calculations and data comparisons of section 6 we consider vapour- 

liquid flow in constant area pipes with both tapering and radiused inlets. These are illustrated in 
figure 2. 
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Figure 2. Pipe inlet configurations considered in critical flow calculations. 
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In the constant area section the flow-field is straightforwardly represented by [26], if we take 
dAJdTi = O. For flow in entrance the following formulations were adopted: 

(a) Tapering inlet. Flow in the converging passage (region I of figure 2a) was in this case 
calculated by putting 

An -~ dAJd~l = - 2  tan ~r/(Rmx - ~/tan Or) 

where/3r is the half angle of the conical taper and Rmx its largest radius. 
(b) Radiused inlet. The flow field in the entry region (region I of figure 2b) was treated as 

radial and inviscid, with path lines converging towards point 0. This radial field can be 
represented by [26] if we take 

A,~ -I dA.Id~ = 2t~l, 

and replace ~ by the radial co-ordinate measured from 0. The boundary conditions for the flow 
in the pipe were specified by matching conditions on the entry plane (ABODE) to those on the 
hemisphere BCD in region I, whose surface area is the full pipe area; this preserves the 
continuity of the dependent variables a, pc, Uk, t in passing between regions I and II. 

5.3 Solution procedure 
The differential equations [26] were integrated by a predictor-corrector method in the 

computer programme CRACKPOT. Details of the method of solution are given in the 
appendix. As outlined in section 2, above, the choked flow-rate is calculated by: 

(i) postulating a flow-rate, W; 
(ii) integrating the [26] along the pipe, starting at a point in the entrance region where the 

flow is almost stationary; 
(iii) determining the distance from the pipe entrance L* at which the pressure gradient 

becomes arbitrarily large (the limit used in the numerical calculation was dpldT1 > 
50 bar/ram). L* is the length of pipe consistent with the postulated choked flow-rate W. 

6, RESULTS AND DISCUSSION 

6.1 Comparison of the theory with experimental data 
The theory compared with available measurements of the critical flow-rate of subcooled and 

saturated water at high pressures. A best fit to the range of data examined in the present work 
was obtained by setting the nucleation site density n, equal to 1000lkg and taking the incipient 
boiling superheat as 0c = 3.0°C. We note that direct measurements of nucleation rates in boiling 
could be used to confirm these values, and thus provide an independent check of the nucleation 

model used here. 
Figure 3 gives an indication of the sensitivity of the predicted mass flux G* to variations in 

n, and 0c. Illustrative calculations are given for the flow of saturated water in 20 mm dia. 
radiused entry pipes at a pressure of 70 bar. It is seen that the predicted mass flux is insensitive 
to variations of ns within a factor of two. Predictions depend more strongly on the choice for 
0c, and the determination of an optimum value required more careful examination of data. 

The critical flow-rate of initially saturated and subcooled water in a 254 mm long 12.8 mm 
dia. pipe was measured by Zaloudek (1964) for stagnation pressures in the range 20< po < 
100 bar. In these experiments the inlet section consisted of a 36 mm long conical taper, with an 
included angle of 2~r = 20 °. Test results are compared with model predictions in figure 4 (data 
below the broken line are for two-phase entry conditions, which are outside the range of 
validity of the present model), ho denotes the liquid enthalpy in the reservoir. Agreement 
between the experiment and theory is seen to be good. 

Sozzi & Sutherland (1975) measured the critical flow-rate of saturated and subcooled water 
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Figure 4. Comparison of theory with Zaloudek's (1%4) data. Pipe with a tapering inlet. 

in 12.7 mm dia. radiused entry pipes, up to 1.8 m long. Reservoir pressures were in the range 
55 < Po < 75 bar, The present theory is compared with the saturated-water data in figure 5, and 
with subcooled water data in figure 6. Also shown in figure 5 is the critical mass flux determined 
assuming isentropic homogeneous equilibrium flow. It is seen that predictions fall mostly within 
the scatter on the experimental results, providing encouraging support for the model. 

The critical flow-rates of initially saturated water in 6.35 mm dia. pipes were measured over 
a wide range of stagnation pressures 5 < Po< 150 bar in tests conducted by Fauske (1965). In 
theseexpcriments the pipes had sharp-edgedentries. Earlier experiments by Bailey (1952) 
suggest that in high velocity steam-water flow separation downstream of sharp-edged entrance 
will result in an annular flow pattern, in which a stable vapour cavity surrounds a low void 
fraction two-phase jet; the latter can travel many diameters before expanding to fill the pipe. 
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Figure 6, Comparison of theory with the measured critical mass flux of subcooled water in radiused entry 
12,7 mm dia. pipes. 

Such bchaviour could not be represented by the present model, which ignores both separation 
and details of the flow pattern. However, inlet effects presumably become negligible for very 
long pipes. In figure 7 the present model is compared with G* measured in the longest pipes of 
Fauske's test series, L/D = 40. Agreement is within 10% over the experimental pressure range, 
and within the scatter on the results. However there is a noticeable systematic under-prediction 
of flows at high pressures. It is interesting that the data fall close to predictions of isentropic 
thermal equilibrium flow theory. This agreement, is however, fortuitous, since the assumption 
of frictionless flow is seriously in error for the long narrow bore pipe used in these tests. 

6.2 Variation o[ velocity and pressure along the pipe 
It is interesting to examine in more detail the calculated axial velocity and pressure profiles 

in a pipe carrying a critical vapour-liquid flow. 
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Figure 7. Comparison of theory with the measured critical mass flux of saturated water in a square-edged 
entry pipe. length L = ..254 mm, diameter D = 6.35 mm. 

Figure 8a shows the predicted velocity protile for a typical example. It is seen that 
interphase relative motion is only significant in the entrance to the pipe and in the large pressure 
gradients near the exit, where the velocity ratio uduL rises to - I.I. In the calculations reported 
in this paper the value of the velocity ratio in the exit region was never observed to exceed 1.25. 
lnterphase acceleration is inhibited by the virtual mass of the bubbles and by the large viscous 
drag which is a consequence of their small size. In the example shown the average•bubble 
radius 100 mm upstream of the choking plane was calculated as 0.015 ram. The bubble number 
density at the same position was calculated as 8 x 10n2/m 3. 

In the neighbourhood of the choking plane the phase velocities uG and uL we always found 
to be close to the local sound speed 

" 2ao(I - ao)2"~ /,+ 
~l ao( l - aa )pL [ i-+ ~aG J 

obtained by linearising the governing two-fluid equations. Here Cc is the velocity of sound in 
the vapour. As discussed by Ardron & Duffey (1977) this agreement is consistent with the 
conventional view of choking a sa  condition in which downstream pressure changes cannot be 
transmitted across the critical plane. 

Figure 8b shows the two-phase pressure drop for the same example. Also shown is the 
pressure gradient calculated by assuming a homogeneous thermal-equilibrium flow, retaining 
pipe wall friction. It is seen that non-equilibrium effects can have a dominating influence on the 
position of the choking plane, and on the static pressure gradient, is a pipe carrying a critical 
vapour-liquid flow. 

6.3 Calculation of the critical-flow in wide bore pipes 
The model was used to compute the critical mass flux of initially saturated water in 

wide-bore radiused entry pipes. Results plotted in figure 9(a,b) show the independent effects of 
MF VoL 4, No. )---G 
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Figure 8. Predicted variation in fluid velocity add pressure along a pipe in the critical flow of saturated 
water. (G* = 2.0x 104kg I s J .  po= 70 barL 

pipe length and diameter on G*. Also shown are predictions conventional isentropic homo- 
geneous equilibrium flow theory. Several interesting points emerge from these comparisons: 

(i) significant effects of non-equilibrium are indicated for pipes less than ten diameters long, 

even for pipes of very wide bore: 
(ii) G* is predicted to vary strongly with pipe length, and only weakly with pipe diameter: 

(iii) it is predicted that for a fixed length of pipe, G* has a weak maximum at some critical pipe 
diameter. This is attributable to the competing effects of flow friction and interphase 
non-equilibrium on G*. Friction tends to depress the mass flux as the diameter of a fixed length 
of pipe is reduced. Non-equilibrium effects tend, on the other hand, to increase G*, and these 
become more important as D is reduced so that the transit time of fluid particles from the 
reservoir to the pipe exit becomes shorter. The existence of a maximum mass flux for a fixed 
length of pipe was predicted qualitatively by Simon (1973): the present model provides 

quantitative estimates of this effect. 

7. C O N C L U S I O N S  

A two-fluid model for nonequilibrium vapour-liquid flow has been used to calculate the 
mass flux of initially saturated or subcooled water discharging from a pipe in critical flow. The 
theory is in good agreement with data over a wide range of reservoir pressures for a single 
choice of parameters characterising (i) the density of nucleation sites in the liquid, and (ii) the 
liquid superheat required to cause bubble nucleation. Measurements of heterogenous nucleation 
rates in boiling are desirable to confirm these values, and provide independent support for the 
model. 

Calculations suggest that in the critical flow of a high pressure bubbly steam-water mixture 
the average velocity of the furrounding liquid exceeds that of the bubbles by more than about 
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Figure %. Predicted critical mass flux of initially saturated water in large bore pipes for po = 35 bar. 

twenty-five per cent, even in the large pressure gradients near the pipe exit. Velocities near the exit 
are predicted to be close to the velocity of sound waves of high frequency. 

The model has been used to calculate the critical flow-rate of saturated water in pipes of the 
range of sizes of interest in water-reactor blowdown safety analysis. Results suggest that the 
discharge flow in pipes up to ten diameters in length can be significantly larger than values 
obtained from homogeneous thermal equilibrium flow theory. 

It is predicted that because of the competing effects of thermal non-equilibrium and pipe 
wall friction on flow-rate the critical mass flux in a given length of pipe will be a maximum for a 
particular pipe diameter. 

Acknowledgement--This paper is published by permission of the Central Electricity Generating 
Board. 
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APPENDIX 

Notes on the numerical procedure used to integrate [26] 
The form of the square matrix A and column vector b in [26] are as follows: 

b= 

FG - aGPGSAT(p)ucAn-I dAjdr/1 
Fa--(I--a6)pLULAn I dA'Jdrl I 
r~(uL-uc)-~ | 

- 2SJRo | 
ua ; J 
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A = 

oPosAT(P) 0 aGUG pGSpT(P) h-GL OtGPGSAT(P} 0 " 

1 --pLUL 0 0 0 (l--Or)PL 

0 (1 - aG)  --~" [ ~ ' + ( I  -- aGlpLUL] 
i 0 0 0 

where P~SAT(P) denotes the density of saturated vapour at pressure p and we have used the 
additional notation: 

a~ /I + 2ac\ 

= 90ZGI'tL(UG -- UL) 

2~/ 
and the facts that 

a G = ( I - a L ) :  F c = - F L .  

Equation [26] was solved by a finite-difference method in the computer program CRACK- 
POT. Solution is achieved by dividing the flow field into a series of mesh points ~ . . . ~ H ,  ~, 
v/i+~.., etc. In the interval [~j, ~/i+~] the equation is integrated by a standard predictor-corrector 
method assuming the evaporation rate, FG, and the mean bubble radius, Rb, maintain the values 
they possess at point ~/j. Evaluation of conditions at ~j+~ allows F~ and Rb to be re-calculated, 
and the solution thus proceeds to the next mesh point. 

To calculate FG and Rb at the kth spatial step the integrals in [18] and [24] were replaced by 
the finite difference formulae: 

where: 

| j=k- I  

rJ k~= ~n,C ~ [4'k,j + d'k.i+d[ F+''- t~J~] 
j=l 

| j=k- I  
nb (k> = ~n,~pL ~ [~j + ~j÷i][t 'j÷')- t(J'], 

Ok.~ = [t (k)- t~i)]V2[20~k) + O(J']2120~k'-- O~J)]pi 

~j = [1 - aa ")] exp [-gu)]. 

The superscript (j) etc. denotes the value of a dependent variable at position ~(J~. 
Mesh spacing was reduced until convergence within a suitable tolerance had been achieved. 

Typically several hundred mesh points were required to give reasonable accuracy. 


